A Posteriori Error Estimates for Finite Element Exterior Calculus: The de Rham Complex
نویسندگان
چکیده
Finite element exterior calculus (FEEC) has been developed over the past decade as a framework for constructing and analyzing stable and accurate numerical methods for partial differential equations by employing differential complexes. The recent work of Arnold, Falk, and Winther includes a well-developed theory of finite element methods for Hodge–Laplace problems, including a priori error estimates. In this work we focus on developing a posteriori error estimates in which the computational error is bounded by some computable functional of the discrete solution and problem data. More precisely, we prove a posteriori error estimates of a residual type for Arnold–Falk–Winther mixed finite element methods for Hodge–de Rham–Laplace problems. While a number of previous works consider a posteriori error estimation for Maxwell’s equations and mixed formulations of the scalar Laplacian, the approach we take is distinguished by a unified treatment of the various Hodge–Laplace problems arising in the de Rham complex, consistent use of the language and analytical framework of differential forms, and the development of a posteriori error estimates for harmonic forms and the effects of their approximation on the resulting numerical method for the Hodge–Laplacian.
منابع مشابه
Complexes of Discrete Distributional Differential Forms and Their Homology Theory
Complexes of discrete distributional differential forms are introduced into finite element exterior calculus. Thus we generalize a notion of Braess and Schöberl, originally studied for a posteriori error estimation. We construct isomorphisms between the simplicial homology groups of the triangulation, the discrete harmonic forms of the finite element complex, and the harmonic forms of the distr...
متن کاملA posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation
In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.
متن کاملEquivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension
In this paper, we study spectral element approximation for a constrained optimal control problem in one dimension. The equivalent a posteriori error estimators are derived for the control, the state and the adjoint state approximation. Such estimators can be used to construct adaptive spectral elements for the control problems.
متن کاملLow-Complexity Finite Element Algorithms for the de Rham Complex on Simplices
We combine recently-developed finite element algorithms based on Bernstein polynomials [1, 14] with the explicit basis construction of the finite element exterior calculus [5] to give a family of algorithms for the Rham complex on simplices that achieves stiffness matrix construction and matrix-free action in optimal complexity. These algorithms are based on realizing the exterior calculus base...
متن کاملGeometric Variational Crimes: Hilbert Complexes, Finite Element Exterior Calculus, and Problems on Hypersurfaces
A recent paper of Arnold, Falk, and Winther [Bull. Amer. Math. Soc. 47 (2010), 281–354] showed that a large class of mixed finite element methods can be formulated naturally on Hilbert complexes, where using a Galerkin-like approach, one solves a variational problem on a finite-dimensional subcomplex. In a seemingly unrelated research direction, Dziuk [Lecture Notes in Math., vol. 1357 (1988), ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Foundations of Computational Mathematics
دوره 14 شماره
صفحات -
تاریخ انتشار 2014